Search results for "Global symmetries"

showing 6 items of 6 documents

Odd-intrinsic-parity processes within the Resonance Effective Theory of QCD

2003

19 páginas, 4 figuras.-- arXiv:hep-ph/0306157v1

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsMesonHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryFísicaFOS: Physical sciencesVector meson dominance1/N ExpansionIntrinsic parityQCDPseudoscalarHigh Energy Physics - PhenomenologyPionGlobal symmetriesHigh Energy Physics - Phenomenology (hep-ph)Antisymmetric tensorEffective field theoryHigh Energy Physics::ExperimentChiral lagrangians
researchProduct

Observable flavor violation from spontaneous lepton number breaking

2022

We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as $\mu \to e \, J$, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous $(g-2)_{\mu}$ in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon $g-2$ anomaly would lead to tension with recent astrophysical bou…

Global SymmetriesHigh Energy Physics - PhenomenologyNuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. RadioactivityComputer Science::Information RetrievalBeyond Standard ModelHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesNeutrino PhysicsHigh Energy Physics::ExperimentQC770-798Journal of High Energy Physics
researchProduct

On the strength of the U A (1) anomaly at the chiral phase transition in N f = 2 QCD

2016

We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the split…

Nuclear and High Energy PhysicsNuclear TheorySpontaneous symmetry breakingHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)PionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsMass screeningPhysicsQuantum chromodynamicsIsovectorCondensed matter physics010308 nuclear & particles physicsTransition temperatureMESON SCREENING MASSES; HIGH-TEMPERATURE PHASE; QUARK-GLUON PLASMA; LATTICE QCD; WILSON FERMIONS; HADRONIC SPECTRUM; O(A) IMPROVEMENT; U(1)(A) SYMMETRY; GAUGE-THEORIES; STRANGE QUARK; Global Symmetries; Lattice QCD; Phase Diagram of QCD; Spontaneous Symmetry BreakingHigh Energy Physics - Lattice (hep-lat)ddc:530Lattice QCD530 PhysikPseudoscalarHigh Energy Physics - Phenomenology
researchProduct

Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb

2013

Searches for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-) and the lepton flavour and baryon number violating decays tau(-) -> (p) over bar mu(+)mu(-) and tau(-) -> p mu(-)mu(-) have been carried out using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb(-1), taken by the LHCb experiment at root s = 7 TeV. No evidence has been found for any signal, and limits have been set at 90% confidence level on the branching fractions: B(tau(-) -> mu(-)mu(+)mu(-) mu(+)mu(-)) p mu(-)mu(-)) (p) over bar mu(+)mu(-) and tau(-) -> p mu(-)mu(-) decay modes represent the first direct experimental limits on these channels.

Nuclear and High Energy PhysicsParticle physicsFlavourDecays of leptons; Global symmetries (e.g. baryon number lepton number); 13.35.-r; 11.30.Fs;FOS: Physical sciences01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicslepton number)High Energy Physics - Experiment (hep-ex)Violació CP (Física nuclear)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]LHC flavour physics lepton number11.30.FsNeutrinsNeutrinos010306 general physicsParticles (Nuclear physics)Physics13.35.-rDecays of leptonsLarge Hadron Collider010308 nuclear & particles physicsGlobal symmetries (e.g. baryon number lepton number)Leptons (Física nuclear)Global symmetries (e.g.High Energy Physics::Phenomenologybaryon numberDecays of lepton3. Good healthFIS/01 - FISICA SPERIMENTALELeptons (Nuclear physics)Física nuclearHigh Energy Physics::ExperimentBaryon numberNeutrino11.30.FFIS/04 - FISICA NUCLEARE E SUBNUCLEAREParticle Physics - ExperimentLeptonCP violation (Nuclear physics)Physics Letters B
researchProduct

The Inverse Seesaw Family: Dirac And Majorana

2021

After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking "$\mu$-terms". These models can be tested both in colliders and with the observation of lepton flavour violating processes.

Global SymmetriesPhysicsNuclear and High Energy PhysicsClass (set theory)010308 nuclear & particles physicsDirac (video compression format)High Energy Physics::PhenomenologyFOS: Physical sciencesInverse01 natural sciencesMAJORANATheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometryBeyond Standard Model0103 physical scienceslcsh:QC770-798Neutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityHigh Energy Physics::ExperimentSymmetry breakingNeutrino010306 general physicsLepton
researchProduct

Stimulated transitions in resonant atom Majorana mixing

2018

Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual $\Delta L = 2$ mixing between a parent $^AZ$ atom and a daughter $^A(Z-2)$ excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino cha…

Global SymmetriesPhysicsNuclear and High Energy Physicseducation.field_of_study010308 nuclear & particles physicsElectron capturePopulationFOS: Physical sciences01 natural sciencesHigh Energy Physics - PhenomenologyMAJORANAHigh Energy Physics - Phenomenology (hep-ph)Double beta decayExcited stateBeyond Standard Model0103 physical sciencesAtomlcsh:QC770-798Neutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrinoAtomic physics010306 general physicseducationGround stateJournal of High Energy Physics
researchProduct